Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Social robots need to be able to interact effectively with small groups. While there is a significant interest in human-robot interaction in groups, little focus has been placed on developing autonomous social robot decision-making methods that operate smoothly with small groups of any size (e.g. 2, 3, or 4 interactants). In this work, we propose a Template- and Graph-based Modeling approach for robots interacting in small groups (TGM), enabling them to interact with groups in a way that is group-size agnostic. Critically, we separate the decision about the target of their communication, or ''whom to address?'' from the decision of ''what to communicate?'', which allows us to use template-based actions. We further use Graph Neural Networks (GNNs) to efficiently decide on ''whom'' and ''what''. We evaluated TGM using imitation learning and compared the structured reasoning achieved through GNNs to unstructured approaches for this two-part decision-making problem. On two different datasets, we show that TGM outperforms the baselines encouraging future work to invest in collecting larger datasets.more » « lessFree, publicly-accessible full text available March 4, 2026
- 
            This work studies the problem of predicting human intent to interact with a robot in a public environment. To facilitate research in this problem domain, we first contribute the People Approaching Robots Database (PAR-D), a new collection of datasets for intent prediction in Human-Robot Interaction. The database includes a subset of the ATC Approach Trajectory dataset [28] with augmented ground truth labels. It also includes two new datasets collected with a robot photographer on two locations of a university campus. Then, we contribute a novel human-annotated baseline for predicting intent. Our results suggest that the robot’s environment and the amount of time that a person is visible impacts human performance in this prediction task. We also provide computational baselines for intent prediction in PAR-D by comparing the performance of several machine learning models, including ones that directly model pedestrian interaction intent and others that predict motion trajectories as an intermediary step. From these models, we find that trajectory prediction seems useful for inferring intent to interact with a robot in a public environment.more » « lessFree, publicly-accessible full text available November 4, 2025
- 
            Deploying robots in-the-wild is critical for studying human-robot interaction, since human behavior varies between lab settings and public settings. Though robots that have been used in-the-wild exist, many of these robots are proprietary, expensive, or unavailable. We introduce Shutter, a low-cost, flexible social robot platform for in-the-wild experiments on human-robot interaction. Our demonstration will include a Shutter robot, which consists of a 4-DOF arm with a face screen, and a Kinect sensor. We will demonstrate two different interactions with Shutter: a photo-taking interaction and an embodied explanations interaction. Both interactions have been publicly deployed on the Shutter system.more » « less
- 
            We study conversational group detection in varied social scenes using a message-passing Graph Neural Network (GNN) in combination with the Dominant Sets clustering algorithm. Our approach first describes a scene as an interaction graph, where nodes encode individual features and edges encode pairwise relationship data. Then, it uses a GNN to predict pairwise affinity values that represent the likelihood of two people interacting together, and computes non-overlapping group assignments based on these affinities. We evaluate the proposed approach on the Cocktail Party and MatchNMingle datasets. Our results suggest that using GNNs to leverage both individual and relationship features when computing groups is beneficial, especially when more features are available for each individual.more » « less
- 
            null (Ed.)The practice of social distancing during the COVID-19 pandemic resulted in billions of people quarantined in their homes. In response, we designed and deployed VectorConnect, a robot teleoperation system intended to help combat the effects of social distancing in children during the pandemic. VectorConnect uses the off-the-shelf Vector robot to allow its users to engage in physical play while being geographically separated. We distributed the system to hundreds of users in a matter of weeks. This paper details the development and deployment of the system, our accomplishments, and the obstacles encountered throughout this process. Also, it provides recommendations to best facilitate similar deployments in the future. We hope that this case study about Human-Robot Interaction practice serves as an inspiration to innovate in times of global crises.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
